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Ondřej Tichý1, Václav Šmídl1, Radek Hofman1, and Andreas Stohl2

1Institute of Information Theory and Automation, Czech Academy of Sciences, Prague, Czech Republic
2NILU: Norwegian Institute for Air Research, Kjeller, Norway

Correspondence to: O. Tichý (otichy@utia.cas.cz)

Abstract. Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. It is

typically formalized as an inverse problem using a linear model that can explain observable quantities (e.g. concentrations or

deposition values) as a product of the source-receptor sensitivity (SRS) matrix obtained from an atmospheric transport model

multiplied by the unknown source term vector. Since this problem is typically ill-posed, current state-of-the-art methods are

based on regularization of the problem and solution of a formulated optimization problem. This procedure depends on manual5

settings of uncertainties that are often very poorly quantified, effectively making them tuning parameters. We formulate a prob-

abilistic model, that has the same maximum likelihood solution as the conventional method using pre-specified uncertainties.

Replacement of the maximum likelihood solution by full Bayesian estimation allows to estimate also all tuning parameters

from the measurements. The estimation procedure is based on the Variational Bayes approximation which is evaluated by an

iterative algorithm. The resulting method is thus very similar to the conventional approach, but with the possibility to esti-10

mate also all tuning parameters from the observations. The proposed algorithm is tested and compared with the state-of-the-art

method on data from the European Tracer Experiment (ETEX) where advantages of the new method are demonstrated. A

MATLAB implementation of the proposed algorithm is available for download.

1 Introduction

Estimating the emissions of a substance into the atmosphere can be done in two alternative ways: The first method, a bottom-15

up approach, is based on a (statistical) model describing the emission process. For greenhouse gases or air pollutants, this is

typically based on detailed country statistics (e.g., about energy use) and some proxy information (e.g., population distribution)

to spatially disaggregate the emissions. The other method, often called top-down approach (Nisbet and Weiss, 2010), makes use

of ambient measurements of the released substance (e.g., atmospheric concentrations) and a model for describing the behavior

of the substance in the atmosphere. The emissions are then constrained to values that are compatible with the measured data.20

The two approaches are complementary, where the top-down approach can be used to verify bottom-up estimates, to identify

problems in bottom-up emission inventories, or to improve these inventories (e.g., Lunt et al., 2015). For determining the

emissions of greenhouse gases into the atmosphere, this two-pronged approach has become very common (e.g., Tans et al.,

1990; Rayner et al., 1999; Stohl et al., 2009; Bergamaschi et al., 2015).
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For other emissions into the atmosphere, such as releases by nuclear accidents (Davoine and Bocquet, 2007; Stohl et al.,

2012), nuclear explosions (Issartel and Baverel, 2003), or for emissions of volcanic ash during volcanic eruptions (Kristiansen

et al., 2010; Stohl et al., 2011), the problem is very different. While the emission location is often known and sometimes the

emission period can be estimated, other bottom-up information can be very incomplete or, especially in real time, inexistent. In

these cases, emission estimates based on the top-down approach are often the only way to constrain the so-called source term,5

which quantifies the emissions of a point source as a function of time and, sometimes, altitude. Still, the source term is one of

the largest source of errors in modeling and predicting the pollutant dispersion in the atmosphere (Stohl et al., 2012). Since it

is key information for decision making in emergency response situations, any improvement of the reliability of the source term

estimation is important.

The common approach for source term determination is to combine data measured in the environment (e.g., radionuclide10

concentrations downwind of the release site) with an atmospheric transport model in a top-down approach. Agreement be-

tween a model with calculated source term and measurements can be modeled and optimized using various parameter es-

timating methods including the Bayesian approach (Bocquet, 2008), maximum entropy principle (Bocquet, 2005b), or cost

function optimization (Eckhardt et al., 2008). For computational reasons, this problem is typically formulated as a variant of

linear regression. The vector of measurements is assumed to be explained using a linear model with a known source-receptor-15

sensitivity (SRS) matrix determined using an atmospheric dispersion model (Seibert and Frank, 2004) and an unknown source

term vector. Simple solution via the ordinary least-squares method typically yields a poor solution because the problem is of-

ten only partially determined and ill-constrained by the available measurement data. Many regularization schemes taking into

account physically plausible ranges of parameter values such as non-negativity of the emissions, or other a priori information,

for instance on the duration of release, have been proposed providing more realistic solutions. However, especially if the a20

priori information is incomplete, the regularization terms can also contain tuning parameters which are selected manually and

subjectively. The solution is subsequently highly sensitive to their choice. In this paper, we propose a probabilistic model that

estimates such tuning parameters from the data using a Bayesian approach with hierarchical prior.

Most of the existing regularization techniques are based on restricted structure of the prior covariance matrix. Various co-

variance structures for linear models have been studied extensively in the literature, see, e.g., reviews (Pourahmadi et al., 2011;25

Daniels, 2005). For example, a model of only diagonal structure of the covariance matrix has been proposed to favor sparse

solutions (Tipping, 2001). It is possible to use more complex models of the covariance structure using Cholesky decompo-

sition (Pourahmadi, 2000), its modifications (Daniels and Pourahmadi, 2002), or more general decompositions (Khare et al.,

2011). The inference mechanism is usually a variant of Monte Carlo simulations. In this work, we choose the prior covariance

structure to have two main diagonals in modified Cholesky decomposition. The inference of the posterior is achieved using the30

Variational Bayes method (Šmídl and Quinn, 2006) which is closely related to algorithms used in this application domain.

We will illustrate the proposed approach in comparison with the commonly used method of Seibert (2001); Eckhardt et al.

(2008) and with other state-of-the-art algorithms (Martinez-Camara et al., 2014), least absolute shrinkage and selection oper-

ator (LASSO) (Tibshirani, 1996), and the conventional Tikhonov regularization (Golub et al., 1999). We will show how the

formal Bayesian approach yields an iterative algorithm closely related to that of Eckhardt et al. (2008). Many heuristic steps35
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in determining regularization parameters will be replaced by statistical estimates. The most significant advantage over the ref-

erence approach is estimation of the tuning parameters from the data. In effect, the proposed algorithm works without manual

intervention. The only entries of the proposed algorithm are the vector of measurements and the SRS matrix calculated with

a dispersion model. The MATLAB implementation of the derived algorithm is freely available for download. The resulting

algorithm is tested and compared using real data from the European Tracer Experiment (ETEX).5

2 Background

In this Section, we review the state of the art methodology, as described e.g. by Eckhardt et al. (2008), which is commonly

used in source term determination and the Variational Bayes method (Šmídl and Quinn, 2006; Miskin, 2000) which is the key

methodology of this work.

2.1 State of the Art Methodology10

We choose the work of Eckhardt et al. (2008) as a reference. It is only an example from a family of optimization methods

based on linear regression such as (Seibert, 2000), (Seibert, 2001), (Bocquet, 2005b), (Bocquet, 2008), or (Tarantola, 2005).

The regularization is achieved by formulating a prior knowledge on the solution and using an iterative algorithm for removing

physically unrealistic values in the posterior solution. The basic inverse problem is formulated based on the following linear

model,15

y =Mx, (1)

where y is the vector of measurements (typically observed concentrations or, sometimes, deposition values), M is a known

source-receptor-sensitivity (SRS) matrix (Seibert and Frank, 2004), and x is the unknown source term vector. Solution of the

problem via the ordinary least-squares method is not feasible since matrix M is typically ill-conditioned.

Regularization of the problem proposed in (Eckhardt et al., 2008) is based on minimization of the cost function J = J1 +20

J2 + J3:

J1 =σ−2
0 (Mx−y)T (Mx−y) , (2)

J2 =xTdiag
(
σ−2

x

)
x, (3)

J3 =ε(Dx)T Dx, (4)

where the term J1 stands for the deviation of the model from the observation with scalar σ0 to be a standard error of the25

observation; however, note that y andM are prone to errors and cumulate uncertainties from measurement and the atmospheric

transport model used for SRS calculations (including errors in the meteorological data used to drive the transport model); J1

therefore includes errors in the model M , mapped into observation space; the term J2 penalizes high values of the solution

where the penalty is inverse proportional to the assumed standard errors of each source term element aggregated in vector σx,

where symbol diag() denotes a diagonal matrix with an argument vector on its diagonal and zeros otherwise; and the term J330
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Algorithm 1 The main ideas of algorithm from (Eckhardt et al., 2008).

1. Iterate until sufficient solution 〈x〉 is obtained:

(a) Choose parameters σ0, σx, ε, and stopcond.

(b) Iterate until
〈x〉neg

〈x〉pos
< stopcond or maximum number of iteration is reached:

i. Solve minimization problem given by (2)–(4).

ii. Change negative parts of x to arbitrary small positive random numbers, reduce related variances σx for negative parts of

solution and increase variance σx for positive parts of solution.

(c) Report estimated source term 〈x〉.

encourages smooth estimates of the source term x where D is a tridiagonal differential matrix numerically approximating a

Laplacian operator and the scalar ε weights the strength of the smoothness of the solution relative to the other two terms. Note

that we assume the smoothness in time as it is used in (Stohl et al., 2011). In the whole paper, we assume that a potential prior

mean has been already subtracted from both sides of equation (1) as proposed in (Eckhardt et al., 2008).

This minimization problem leads to a system of linear equations that is solved for the source term x. The positivity of the5

resulting source term is achieved by an iterative algorithm where all negative values are replaced by an arbitrary small positive

number together with a reduction of their standard errors to force these values closer to the non-negative prior solution. For

the estimation algorithm, proper values of parameters σ0, σx, and ε need to be preselected manually and potentially changed

repeatedly until an acceptable solution is obtained. The main ideas of the algorithm are summarized in Algorithm 1.

2.2 Bayesian Interpretation of the Reference Method10

The method of Eckhardt et al. (2008) has Bayesian interpretation as a maximum a posteriori probability estimate of the fol-

lowing model:

p(y|x) =N (Mx,σ2
0In)∝ exp

(
−1

2
σ−2

0 (Mx−y)T (Mx−y)
)

(5)

p(x|Σx) = tN (0,Σx)∝ exp
(
−1

2
xTΣxx

)
χ(xi > 0), (6)

Σx = (diag
(
σ−2

x

)
+ εDTD)−1. (7)15

where N (µ,Σ) is a multivariate Gaussian distribution with mean µ and covariance matrix Σ, In is the n×n identity matrix,

tN (µ,Σ,〈0,∞〉) is a truncated Gaussian distribution with parameters µ,Σ and support (domain) of physically realistic values

restricted to positive values of all entries of the vector x = [x1, . . . ,xn], see Appendix A.

The logarithm of the posterior probability of the unknown x has the form

logp(x|y) =−1
2

(J1 + J2 + J3) + γ(x) + c, (8)20
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where γ(x) is the term enforcing positivity and c aggregates all terms independent of x. Maximization of the log-likelihood is

then equivalent to minimization of the cost function of the reference method.

While interpretation of positivity by truncated normal distribution is non-standard, it has the same effect as illustrated in

Figure 1. The maximum likelihood estimate is the value of µ if µ > 0 and it is zero otherwise.

The maximum likelihood solution is the simplest case of Bayesian inference. Application of full Bayesian inference (i.e.5

evaluation of full posterior distribution and their marginals) can address two important problems:

1. selection of tuning parameters σ0, σx, and ε which are considered to be hyper-parameters and estimated from the data,

2. selection of the appropriate model M via Bayesian model selection.

We are concerned only with the first problem in this paper while matrix M is considered fixed. Full Bayesian treatment of the

unknowns σ0, σx, and ε is not analytically tractable. Approximate inference of these values does not yield acceptable results.10

Therefore, we will present results for a different and more complex structure of the prior variance Σx that allows stable and

reliable estimation of the source term vector x via the Variational Bayes method.

3 Probabilistic Model with Unknown Prior Covariance

We formulate the probabilistic model to cope with the linear inverse problem (1) and derive an iterative algorithm to estimate

parameters of this model.15

3.1 Observation Model

The observation model is identical to (5), i.e. the isotropic Gaussian noise model1. However, we will consider the precision

(inverse variance) of the observations to be unknown, parameterized by ω−1 = σ2
0 ,

p(y|x,ω) =Ny

(
Mx,ω−1Ip

)
. (9)

Since ω is unknown and will be estimated, we define its own prior distribution in the form of the Gamma distribution as20

p(ω) = G (ϑ0,ρ0) , (10)

with chosen prior constants ϑ0,ρ0. The selection of these constants will be discussed later in this paper.

3.2 Prior Model

We use the same prior for the source term vector (6), with the exception that the prior covariance of x, denoted as Σx, is

unknown. Note from (7) that the covariance matrix is a band matrix with predefined structure. Relaxing the assumption of25

known structure we consider the following structure of the prior covariance:

Σx =LΥLT . (11)

1Gaussian noise with an arbitrary known covariance matrix can be transformed into this form by scaling of the observations and the SRS matrix.
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It is composed of diagonal matrix Υ = diag(υ), with unknown positive diagonal entries forming vector υ = [υ1, . . . ,υn] and

zeros otherwise. L is a lower bidiagonal matrix

L=




1 0 0 0

l1 1 0 0

0
. . . 1 0

0 0 ln−1 1



, (12)

with unknown off-diagonal elements forming a vector l = [l1, . . . ln−1]. The task is to introduce prior models for vectors υ and

l whose estimates fully determine the decomposition (11).5

The prior model of the vector υ is selected as

p(υj) = Gυj
(α0,β0) , ∀j = 1, . . . ,n, (13)

where α0,β0 are selected prior constants. The prior model of the vector l is selected in a problem specific way. Note that for

lj = 0, model (11) corresponds to (7) with ε= 0. For lj =−1, model (11) corresponds to (7) with ε→∞. Since we expect the

result to be within this interval, we define the prior on lj to be independently Gaussian distributed with unknown precision ψj :10

p(lj |ψj) =Nlj
(
l0,ψ

−1
j

)
, (14)

p(ψj) =Gψj
(ζ0,η0) , ∀j = 1, . . . ,n− 1, (15)

where ζ0,η0 are selected prior constants. Since we expect the neighboring values xi and xi+1 to be either uncorrelated (lj = 0)

or correlated (lj =−1) we choose parameters l0, ζ0,η0 to cover these extremes with preference for a value l0 =−1, and

precision ψj set around this value using selection ζ0 = η0 = 10−2. This allows parameter lj to vary in the range circa−1±10015

which we consider to be sufficiently non-informative. Further relaxation of this parameter to a wider range is not recommended.

The joint model of the full distribution is then:

p(y,x,υ, l,ψ1,...,n−1,ω) = p(y|x,ω)p(x|υ, l,ψ1,...,n−1)p(υn)
n−1∏

i=1

p(υi)p(li|ψi)p(ψi). (16)

Estimation of all unknown parameters can be obtained by the Bayes rule which is however computationally intractable.20

3.3 Iterative Variational Bayes Algorithm

Following the Variational Bayesian methodology (Šmídl and Quinn, 2006), we seek a posterior distribution in a very specific

form, satisfying conditional independence:

p(x,υ, l,ψ1,...,n−1,ω|y)≈ p(x|y)p(υ|y)p(l|y)p(ψ1,...,n−1|y)p(ω|y). (17)

The best possible approximation is defined as a minimizer of the Kullback-Leibler divergence (Kullback and Leibler, 1951)25

between the solution and the hypothetical true posterior. The necessary conditions of the best approximation uniquely determine
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Algorithm 2 Least Square with Adaptive Prior Covariance (LS-APC) algorithm.

1. Initialization

(a) Set prior parameters ϑ0,ρ0,α0,β0 to non-informative values of 10−10 (yielding non-informative priors). Values ζ0,η0 are set

to physically meaningful values of 10−2.

(b) Set initial values used in computation of the covariance matrix of the source term, Σx: 〈ω〉(0) = 1
max(MT M)

, 〈Υ〉(0) = γIn,

and 〈L〉(0) = In. If γ is not specified use γ = 1.

2. Iterate until convergence or maximum number of iterations is reached:

(a) Compute estimate of the source term 〈x〉(i) using least squares:

Σ(i)
x =

(
〈ω〉(i−1)MTM +

〈
LΥLT

〉(i−1)
)−1

, (23)

µ(i)
x = Σ(i)

x

(
〈ω〉(i−1)MT y

)
, (24)

(b) Compute estimates 〈x〉 using moments of the truncated normal distribution (A).

(c) Update estimates of 〈Υ〉(i), and 〈L〉(i) defined in Appendix B,

(d) Compute precision parameter 〈ω〉(i) using Appendix B.

3. Report estimated source term 〈x〉.

the form of the posterior distributions. These were identified to be as follows:

p̃(x|y) =tNx (µx,Σx) , (18)

p̃(υj |y) =Gυj
(αj ,βj) , ∀j = 1, . . . ,n, (19)

p̃(lj |y) =Nlj
(
µlj ,Σlj

)
, ∀j = 1, . . . ,n− 1, (20)

p̃(ψj |y) =Gψj
(ζj ,ηj) , ∀j = 1, . . . ,n− 1, (21)5

p̃(ω|y) =Gω (ϑ,ρ) . (22)

The shaping parameters of posterior distributions (18)–(22), µx,Σx,αj ,βj ,µlj ,Σlj , ζj ,ηj ,ϑ,ρ, are derived in Appendix B.

The shaping parameters are functions of standard moments of posterior distributions, e.g. 〈x〉,
〈
xxT

〉
and

〈
xTx

〉
for the

distribution p̃(x|y). Symbol 〈x〉 denotes the expected value with respect to the distribution on the variable in the argument.

The shaping parameters and the required moments form a set of implicit equations which is solved iteratively using Algorithm10

2. The algorithm will be called Least Square with Adaptive Prior Covariance (LS-APC) and is freely available for download

from http://www.utia.cz/linear_inversion_methods.

Note that the algorithm is closely related to Algorithm 1 of the reference method. It also iteratively solves the least squares

problem but with adaptive tuning of its parameters. The proposed method has the following differences:

7
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1. The algorithm is largely tuning-free, i.e. all hyper-parameters ω,li,υi,ψi are estimated from the data. The results may

slightly differ for different choices of the initial conditions since the Variational Bayes solution may suffer from local

minima. The most sensitive initial value is 〈Υ〉(0) of tuning parameter γ. The sensitivity of the solution to this choice is

very low which will be discussed in Section 5.2.

2. Since estimating the hyper-parameter values requires the calculation of the variance of the posterior distribution, the5

covariance matrix of the least squares problem needs to be evaluated. This implies a slightly higher computational cost

compared to Algorithm 1 where this matrix is not needed.

3. The method of positivity enforcement is replaced by moments of the truncated normal distribution.

4 Verification Using a Synthetic Dataset

To test the proposed LS-APC algorithm and to demonstrate its performance, we design a synthetic dataset before performing10

a real data experiment. We generate elements of the matrix M ∈R20×10 as random samples from an uniform distribution

between 0 and 1 and elements less then 0.5 were cropped to 0 to obtain an ill-conditioned matrix M . The source term is

generated as xtrue = [0,0,0,1,1,1,0,0,0,0] as shown in Figure 2, top row, using dashed red line. The vector of measurement

data is generated according to the assumed model (1) as y =Mx+e where three sets are generated with different levels of the

noise term e. Each element ej is generated randomly asN (0, c2k) where the coefficients are set as c1 = 0 for the set 1, c2 = 0.415

for the set 2, and c3 = 0.8 for the set 3. Then, negative elements of y are cropped to 0. Note that these data are supplied together

with the LS-APC algorithm as a tutorial example.

The results from the LS-APC algorithm for this dataset are given in Figure 2. The estimates of the source term are shown

in the uppermost row (solid blue lines) together with the simulated true source term (dashed red line). The estimated values of

the vector 〈υ〉, i.e. the diagonal of the matrix 〈Υ〉, are displayed in the second row. This parameter models the sparsity of the20

solution where a higher value signifies higher confidence that the corresponding element of the solution is zero. The parameter

〈l〉 modeling the smoothness of the solution is shown in Figure 2, bottom row. Note that at the constant parts of the solution

this parameter is approaching -1, signifying highly correlated neighboring elements, while it is approaching zero at the time

of the step change, indicating uncorrelated neighbors. The two parameters 〈υ〉 and 〈l〉 can also compensate one another, as is

demonstrated on the falling edge of the source term. Instead of the expected zero in the smoothness parameter l6, the posterior25

value is close to the prior. The difference in the data is compensated by the sparsity parameter υ6 which is very low, indicating

very low confidence in this value.

The quality of the reconstruction depends on the noise level, as demonstrated in individual columns of Figure 2. As expected,

the source term is reconstructed precisely when the data are noise free (Figure 2, left column). With increasing noise, the

reconstruction departs form the ground truth (Figure 2, middle column), however, the start and end of the release is still30

estimated with sharp raising and falling edges. The estimate is also sparse, i.e. the estimated values of the source term outside

of the true release window are zero. Note that this result was achieved with standard deviation of the noise equal to 40% of the
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released quantity. Naturally, with even higher noise (standard deviation equal to 80% of the released quantity, Figure 2, right

column), the estimates also depart from the ideal shape and yields undesired artifacts.

5 Experimental Results for the ETEX Data

The European Tracer Experiment (ETEX) took place at Monterfil in Brittany, France, on 23th October 1994 (Nodop et al.,

1998). Its attractiveness is that it is one of a very few controlled large-scale tracer release experiments with a large amount of5

available information, see https://rem.jrc.ec.europa.eu/etex/. During ETEX, two release experiments were made. We use here

only the data from the first experiment (ETEX-I), for which atmospheric dispersion models generally performed much better

than for the second experiment, e.g., (Stohl et al., 1998). During ETEX-I, a total amount of 340 kilograms of perfluoromethyl-

cyclohexane (PMCH) was released at a constant rate during nearly 12 hours. PMCH is nearly inert in the atmosphere and

does not experience dry deposition or wet scavenging and is thus suitable for testing how well transport models can handle10

atmospheric dispersion. Atmospheric concentrations of the released PMCH were monitored across Europe by a network of 168

measurement stations with a sampling interval of 3 hours over a period of 72 hours. The release location and station locations

are shown in Figure 4. The ETEX data set has been used previously for testing inverse models, e.g., by (Bocquet, 2005a, 2007),

(Krysta et al., 2008), and (Martinez-Camara et al., 2014).

To construct the SRS matrix M , we used version 8.1 of the Lagrangian particle dispersion model FLEXPART (Stohl et al.,15

2005, 1998). An earlier version of the model was evaluated against the first ETEX experiment and revealed relatively good

performance compared to other models (Stohl et al., 1998). We assumed that the release location is known, and that the release

occurred during a 5-day period including the true release time but that the source term (i.e., released amount as a function of

time) is not known. Thus, we performed 120 forward calculations from the release site, each for a hypothetical unit release

during a one-hour period. For each of these unit release simulations, the simulated tracer concentrations were sampled at all the20

measurement station locations and during the exact measurement times (in total, 3102 measurements were made), to construct

the SRS matrix M of the size 3102×120. The SRS matrix was used together with the observation vector, y, of size 3102×1, to

reconstruct the source term, vector x of the size 120× 1. The reconstructed source term can then be compared with the known

true source term, to evaluate the skill of the reconstruction. The same set-up was used by Martinez-Camara et al. (2014) to test

a method to blindly remove outliers.25

For running FLEXPART, we have used meteorological input data from the European Center for Medium-Range Weather

Forecasts (ECMWF). Different data sets are available from ECMWF and we have used two different data sets: 1) Data from

the 40-year re-analysis (ERA-40); 2) Data from the continuously updated ERA-Interim re-analysis. For both meteorological

data sets we have run FLEXPART in two different configurations:

A) with the model time step in the boundary layer limited to less than 20% of the Lagrangian timescale and a maxi-30

mum value of 300 s;

B) with time step only limited by 300 s, which may be chosen for computationally demanding real-time simulations.

9

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-5, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 17 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



While the differences between these simulations are actually rather small in terms of simulated SRS values, they can serve as

a lower estimate of the uncertainty associated with the SRS calculations and can still produce quite substantial differences in

the retrieved source terms.

5.1 Source Term Estimation Using LS-APC Algorithm

The task is to estimate the original source term x based only on the available measurement data. The algorithm 2 was applied to5

the selected example data ETEX ERA-Interim B and the results are presented in Figure 3. In the top panel of Figure 3, the red

line denotes the true source term while the blue line denotes the estimated source term 〈x〉. The estimated sparsity parameter

〈υ〉, i.e. the diagonal of the matrix 〈Υ〉, is given in the middle panel of Figure 3, and the estimated smoothness parameter 〈l〉,
i.e. second diagonal of the matrix 〈L〉, is given in the bottom panel. Note that the sparsity parameter is approaching 1010 (value

determined by α0 and β0) at times when no release occurred; therefore, the posterior mean value is close to the prior value,10

which is zero. The posterior mean value of the smoothness parameter lj is −1 when the neighboring values of the solution are

close to each other. During periods of rapid change of the release, the estimate of the smoothness parameter approaches zero.

While the reconstructed source term does not agree exactly with the known true source terms, the total released amounts, 230

and 340 kg, are quite similar. Also the timing of the release is well captured, although the reconstructed release shows some

variation during the release period, while the true release rate was constant. Furthermore, the reconstruction suggests some15

small release to occur also after the true release has ended. The quality of the reconstruction is comparable to or better than

previous reconstructions of the ETEX source term (e.g., Seibert and Stohl, 1999; Bocquet, 2005a, 2007; Martinez-Camara et al.,

2014. Note that these results were obtained without setting any tuning parameters, all regularization parameters are estimated

from the data within the iterative algorithm. The sensitivity of this approach to the initial values and assumed uncertainties will

be studied in comparison with other algorithms.20

5.2 Comparison and Sensitivity Study

We compare results from the proposed LS-APC algorithm, Algorithm 2, with those obtained from (Eckhardt et al., 2008),

Algorithm 1, with the RegClean algorithm (Martinez-Camara et al., 2014), the least absolute shrinkage and selection operator

(LASSO) (Tibshirani, 1996), and the Tikhonov regularization (Golub et al., 1999). Specifically, we study the ability of the

proposed solution to regularize the problem for different choices of the selected tuning parameters. It was found that the results25

of Algorithms 1 and 2 are most sensitive to initial values of the sparsity parameters, σx and υ respectively. Similarly, the

RegClean, LASSO, and Tikhonov algorithms also have parameters influencing preference for penalization of large values of the

solution (e.g. the α parameter of the Tikhonov and LASSO regularization). Thus, we run all five algorithms with this selected

tuning parameter set in points of interval α ∈< e−15,e+7 > for four ETEX datasets. That is, for the methods with diagonal

choice, e.g. the reference method in Algorithm 1, we set σ−2
x = αIn. For the LS-APC algorithm, this choice influences only30

the initial value of the regularization parameter via γ = α.

All remaining parameters of the other methods were kept at their default values (RegClean) or set to best performing values

(Algorithm 1). Evaluation of the results was performed on the metric of mean absolute error (MAE) between the true and the

10
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estimated source term:

MAE =
1
n

n∑

j=1

|xj,true−xj,estim|. (25)

The results for all methods at the same range of the tuning parameters are displayed in Figure 5 for ETEX ERA-40, and Figure

6 for ETEX ERA-Interim, top rows. The estimate of the total released mass is displayed in the bottom row of Figures 5 and 6.

Note that all methods achieve similar results although for different values of the tuning parameters. This is most obvious in the5

estimate of the total released mass, where each method has a range of tuning values yielding the same estimate. This looks like

a plateau on the curve. The value of the total released mass at this plateau is very similar for all methods. The exception is the

experiment ERA-Interim A, where the curves of the estimated total released mass contain two plateaus. Comparison with the

true total released mass of 340 kg is misleading in this case since the plateau at 180 kg is due to an artifact, as discussed below.

Examples of results from all algorithms for all settings of the regularization parameter for ETEX ERA-Interim B are dis-10

played in Figure 7 and for the problematic mode of ETEX ERA-Interim A in Figure 8. The true source term is denoted by

the dashed red lines and the estimated source terms are denoted by the same lines as in Figures 5 and 6. Note that the ETEX

ERA-Interim A has a strong artifact at the first element of the solution since all receptors have high sensitivity to it (high values

in the first column of the SRS matrix). Thus, non-zero value of the first element of x can explain a part of the observation.

Note that the LS-APC algorithm provides results that are almost insensitive to the value of the tuning parameter (used only15

as a starting point). Moreover, the results of the LS-APC algorithm correspond to the results of other methods with best tuned

parameters. However, the proposed algorithm still suffers form local minima as demonstrated in the case of ETEX ERA-Interim

A. However, the same local minima are visible for the other methods as well. Despite this non-uniqueness, the algorithm still

provides only two possible solutions in contrast to the other algorithms that yield a range of possible solutions for different

settings of the tuning parameters as can be seen in Figures 7 and 8.20

The computational cost of the proposed algorithm is higher than simple techniques such as LASSO and the Tikhonov

regularization since least squares fit calculations are run in each iteration. The convergence is typically reached in tens of

iterations. All experiments were run with 100 iterations where the equilibrium was always reached.

6 Conclusions

We present a novel algorithm for the linear inversion problem which is applied to the problem of source term determination for25

pollutant releases into the atmosphere. It is closely related to the common optimization based techniques with regularization.

The model is based on a probabilistic formulation with unknown prior covariance matrix. Application of the Variational Bayes

method to the proposed probabilistic model results in an iterative algorithm that is closely related to the existing algorithms.

The key difference is that the new algorithm estimated all hyper-parameters from the data without human interaction.

The proposed algorithm was validated using data from the ETEX experiment. It was shown that the LS-APC algorithm30

provides more consistent estimates of the source term with very little influence from initialization and with no need of human

11
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interaction. Therefore, the algorithm seems particularly suited for real-time applications where there is no time for manually

setting tuning parameters.

Code availability

The code for the LS-APC algorithm is available upon request for academic and non-commercial use from the corresponding au-

thor or through the following link: http://www.utia.cz/linear_inversion_methods. The implementation is provided in MATLAB5

while no additional toolboxes are required for the algorithm.
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Appendix A: Truncated Normal Distribution

Truncated normal distribution, denoted as tN , of a scalar variable x on interval [a;b] is defined as10

tNx(µ,σ, [a,b]) =
√

2exp((x−µ)2)√
πσ(erf(β)− erf(α))

χ[a,b](x), (A1)

where α= a−µ√
2σ

, β = b−µ√
2σ

, function χ[a,b](x) is a characteristic function of interval [a,b] defined as χ[a,b](x) = 1 if x ∈ [a,b]

and χ[a,b](x) = 0 otherwise. erf() is the error function defined as erf(t) = 2√
π

´ t

0
e−u

2
du.

The moments of truncated normal distribution are

〈x〉= µ−√σ
√

2[exp(−β2)− exp(−α2)]√
π(erf(β)− erf(α))

, (A2)15

〈
x2
〉

= σ+µx̂−√σ
√

2[bexp(−β2)− aexp(−α2)]√
π(erf(β)− erf(α))

. (A3)

For multivariate case, see (Šmídl and Tichý, 2013).

Appendix B: Shaping Parameters of Posterior Distributions

Σx =
(
〈ω〉MTM +

〈
LΥLT

〉)−1
, µx =Σx

(
〈ω〉MTy

)
, (B1)

α=α0 +
1
2
1n,1, β =β0 +

1
2

diag
(〈
LTxxTL

〉)
, (B2)20

Σlj =
(
〈υj〉

〈
x2
j+1

〉
+ 〈ψj〉

)−1
, µlj =Σlj (−〈υj〉〈xjxj+1〉+ l0〈ψj〉) , (B3)

ζj =ζ0 +
1
2
, ηj =η0 +

1
2
〈
(lj − l0)2

〉
, (B4)

ϑ=ϑ0 +
p

2
, ρ=ρ0 +

1
2

tr
(〈

xxT
〉
MTM

)
− 1

2
2yTM〈x〉+ 1

2
yTy. (B5)
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Figure 1. Example of the normal distribution N (1,1), blue line, and the truncated normal distribution tN (1,1, [0,∞]), red line.
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Figure 2. The results of the LS-APC algorithm on synthetically generated dataset with different levels of noise degradation (increasing

from left to right; ej =N (0, c2k), where ck = 0 for the set Synthetic 1, ck = 0.4 for the set Synthetic 2, and ck = 0.8 for the set Synthetic

3). In the top panel, the true source term is given by the red line while the estimated source term is given by the blue line. The estimated

sparsity parameters, vectors 〈υ〉, are given in the middle panel using full line while prior values are given using dotted lines and the estimated

smoothness parameters, vectors 〈l〉, are given in the bottom panel while prior values are given using dotted lines.
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Figure 3. The results of the LS-APC algorithm for the ETEX experiment (ETEX ERA-Interim B). In the top panel, the true source term is

given by the red line while the estimated source term is given by the blue line. The estimated sparsity parameter, vector 〈υ〉, is given in the

middle panel and the estimated smoothness parameter, vector 〈l〉, is given in the bottom panel.
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Figure 5. Comparison of sensitivity of the tested algorithms to the setting of the selected tuning parameter measured in terms of the mean

absolute error metric (top row) and total estimated mass of the source term (bottom row) on data ETEX ERA-40 A and B.
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Figure 7. Comparison of the estimated source term for data ETEX ERA-Interim B for all settings of the regularization parameter using all

algorithms. The true source term is denoted by the dashed red line.
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Figure 8. Comparison of the estimated source term for data ETEX ERA-Interim A for all settings of the regularization parameter using all

algorithms. The true source term is denoted by the dashed red line.
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